Personal Data

Full name

Laurentius Franciscus Maria de Haan

Publishing name

Laurentius Franciscus Maria de Haan

Birthday

1937-01-15T00:00:00

Academic Degrees

DOUTORAMENTO(0)

Degree date

1970

Final grade

accepted

Degree granting institution

Outra

School / College / Campus

Faculdade de Ciências do Mar e do Ambiente

Thesis title

Regular variation and sample extremes

Supervisor

Co-supervisor

Scientific area

Mathematical Statistics

Profissional activity

Period Position Institution
01-06-2008 - 01-06-2011 Professor of Probability and Statistics University of Tilburg, The Netherlands
de 2005 a 2006 Gulbenkian professor Universidade de Lisboa
de 1973 a 1998 professor catedratico Erasmus universiteit Rotterdam

Area of scientific activity

Area of scientific activity

Probability, Statistics and Stochastic Processes

Specialization domain

Extreme Value Theory, Extended Regular Variation, Empirical Processes, Point Processes

Current main scientific area

Statistics of Extremes in univariate, multivariate and infinite-dimensional set-ups.

Other scientific activities

Stochastic Processes, Time series analysis, Sufficient statistics, Fundamental Probability (including measure theory), Stochastic methods in finance, insurance mathematics, among others.

Experience as scientific advisor

PhD students:
E. Omey (1982, partially), J.B.G. Frenk (1983), J.L. Geluk (1983), S. Schim van der Loeff (1987, partially), H. Brozius (1989), A. Dekkers (1991), Huang Xin (1992), A.K. Sinha (1997), L. Peng (1998), G. Draisma (2001), T. Lin (2002), A.Ferreira (2002), D. Li (2004), C. Zhou (2008); JJ Cai (2012).

Participations in R&D projects

--"Overschrijdingslijnen", a project based on extreme-value analysis, meant to provide new standards for the Dutch sea defenses. Joint project with people from "Rijkswaterstaat" (the Dutch government agency overseeing the sea defenses, among other things), the Royal Netherlands Meteorological service and CWI (Centre for Mathematics and Computer Science in Amsterdam). Commissioned by the Ministry of Public Works (1984-1992).
--"Neptune", a larger scale but similar project, sponsored by the European Union via the MAST program and in cooperation with BMT Port & Coastal Limited; Delft Hydraulics; Rijkswaterstaat; GKSS-Forschungszentrum Geest-hacht GmbH; University of Lancaster; University of East Anglia. Novel aspects are: firstly the wide-ranging set-up starting from climatological data going down to the water levels and movements near the British and Dutch coasts and secondly the higher-dimensional statistical set-up in the extreme-value analysis (1995-1997). Finished March 1997.
--Member of the Project VEXTRA- Extreme Values and Resampling Techniques (POCTI/1999/MAT/3347). 2000-2003.
--Member of the Project ERAS- Extremes, Risk, Environment and Safety (POCTI/MAT/58876/2004). 2005-2007.
--Coordinator of the project EXES- Extremos espaciais (PTDC/MAT/64924/2006). 2007-2010.
--Coordinator of project ENES- Extremes in Space (PTDC/MAT/112770/2009. 2009-2014.

Awards

Year Award Awarding entity
2000 Doctor honoris causa University of Lisbon

Publications

Teses

  • On regular variation and its application to weak convergence of sample extremes. University of Amsterdam.

Artigos em revistas de circulação internacional com arbitragem científica

  • L. de Haan and J.Th. Runnenburg (1969). Some remarks concerning the quotient of sample median and sample range for a sample of size 2n + 1 from a normal distribution. Statistica Neerlandica 23, 227-234.
    2. L. de Haan (1970). Note on a paper by H.G. Tucker. Annals Math. Statist. 41, 729-732.
    3. L. de Haan (1970). On regular variation and its application to the weak convergence of sample extremes. Thesis, University of Amsterdam / Mathematical Centre tract 32.
    4. L. de Haan (1971). A form of regular variation and its application to the domain of attraction of the double exponential distribution. Z. Wahrscheinlichkeitstheorie 17, 241-248.
    5. L. de Haan and A. Hordijk (1972). The rate of growth of sample maxima. Annals Math. Statist. 43, 1185-1196.
    6. A.A. Balkema and L. de Haan (1972). On R. von Mises' condition for the domain of attraction of $exp(-e^{-x})$. Annals Math. Statist. 43, 1352-1354.
    7. L. de Haan and S.I. Resnick (1973). Almost sure limit points of record values. Journal of Appl. Prob. 10, 528-542.
    8. L. de Haan (1974). On sample quantiles from a regularly varying distribution function. Annals of Statistics 2, 815-818.
    9. A.A. Balkema and L. de Haan (1974). Residual life time at great age. Annals of Probability 2, 792-804.
    10. L. de Haan (1974). Equivalence classes of regularly varying functions. Stochastic Processes and Appl. 2, 243-260.
    11. L. de Haan (1974). On random indices and limit distributions. Annals of Probability 2, 181.
    12. L. de Haan (1974). Weak limits of sample range. Journal of Appl. Prob. 11, 836-841.
    13. L. de Haan (1976). An Abel-Tauber theorem for Laplace transforms. J. London Math. Soc. (2) 13, 537-542.
    14. L. de Haan (1976). Sample extremes: an elementary introduction. Statistica Neerlandica 30, 161-172.
    15. L. de Haan (1977). On functions derived from regularly varying functions. J. Austr. Math. Soc. 23 (series A), 431-438.
    16. L. de Haan and S.I. Resnick (1977). Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie 40, 317-337.
    17. A.A. Balkema and L. de Haan (1978). Limit distributions for order statistics. Theoria Veroatnostei i primenenia 23, I 80-96, II 358-375.
    18. L. de Haan and E. Taconis-Haantjes (1978). Asymptotic properties of a correlation coefficient type statistics connected with the general linear model. Journal of Econometrics 7, 15-21.
    19. L. de Haan (1978). A characterization of multidimensional extreme-value distributions. Sanky\`a, The Indian Journal of Statistics 40, series A, 85-88.
    20. L. de Haan and G. Ridder (1979). Stochastic compactness of sample extremes. The Annals of Probability 7, No. 2, 290-303.
    21. L. de Haan and S.I. Resnick (1979). Conjugate $\pi$-variation and process inversion. The Annals of Probability 7, 1028-1035.
    22. L. de Haan and E. Taconis-Haantjes (1979). On Bahadur's representation of sample quantiles. Ann. Inst. Statist. Math. 31, part A, 299-308.
    23. L. de Haan and S.I. Resnick (1979). Derivatives of regularly varying functions in $IR^d$ and domains of attraction of stable distributions. Stochastic Processes and their Applications 8, 349-355.
    24. A.A. Balkema, J.L. Geluk and L. de Haan (1979). An extension of Karamata's tauberian theorem and its connection with complementary convex functions. Quart. J. Math. Oxford (2) 30, 385-416.
    25. L. de Haan and S.I. Resnick (1980). A simple asymptotic estimate for the index of a stable distribution. Journal of the Royal Stat. Soc. B 42, 83-87.
    26. L. de Haan (1981). Estimation of the minimum of a function using order statistics. Journal of the American Stat. Ass. 76, 467-469.
    27. J.L. Geluk and L. de Haan (1981). On functions with small differences. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series A, 84, 187-194 and Indigationes Mathematicae 43.
    28. L. de Haan and S.I. Resnick (1981). On the observation closest to the origin. Stochastic Processes and their Applications 11, 301-308.
    29. L. de Haan and S.I. Resnick (1982). Local limit theorems for sample extremes. The Annals of Probability 10, 396-413.
    30. L. de Haan and E. Omey (1983). Integrals and derivatives of regularly varying functions in $R^d$ and domains of attraction of stable distributions II. Stochastic Processes and its Applications 16, 157-170.
    31. L. de Haan (1984). A spectral representation for max-stable processes. Annals of Probability 12, 1194-1204.
    32. L. de Haan, E. Omey and S.I. Resnick (1984). Domains of attraction and regular variation in $IR^d$ III. Journal Multivariate Analysis 14, 17-33.
    33. L. de Haan and S.I. Resnick (1984). Asymptotically balanced functions and stochastic compactness of sample extremes. Annals of Probability 12, 588-608.
    34. L. de Haan and S.I. Resnick (1984). Stochastic compactness and point processes. Journal Australian Mathematical Society, (Series A) 37, 307-316.
    35. L. de Haan and U. Stadtm\"uller (1985). Dominated variation and related concepts and Tauberian theorems for Laplace transforms. Math. Analysis Appl. 108, 344-365.
    36. L. de Haan (1986). A stochastic process that is autoregressive in two directions of time. Statistica Neerlandica 40, 39-45.
    37. J.L. Geluk, L. de Haan and U. Stadtm\"uller (1986). A Tauberian theorem of exponential type and related results. Canadian J. Math. 38, 697-718.
    38. L. de Haan and J. Pickands (1986). Stationary min-stable stochastic processes. Probab. Th. Rel. Fields 72, 477-492.
    39. L. de Haan and S.I. Resnick (1987). On regular variation of probability densities. Stoch. Processes and Applic. 25, 83-93.
    40. J.L. Geluk and L. de Haan (1987). Regular variation, extensions and Tauberian theorems. C.W.I. Tract 40. Centrum voor wiskunde en informatica / Mathematisch Centrum, Amsterdam.
    41. H. Brozius and L. de Haan (1987). On limiting laws for the convex hull of a sample. J. Applied Probability 24, 852-862.
    42. L. de Haan and E. Verkade (1987). On extreme value theory in the presence of a trend. J. Applied Prob. 24, 62-76.
    43. L. de Haan and I. Weissman (1988). On the index of the outstanding observation among $n$ independent ones. Stoch. Proc. and Applic. 27, 317-329.
    44. A.A. Balkema and L. de Haan (1988). A.s. continuity of stable moving average processes with index $<$ 1. Annals of Probability 16, 333-343.
    45. L. de Haan and S.T. Rachev (1989). Estimates of the rate of convergence for max-stable processes. Annals of Probability 17, 651-677.
    46. A.L.M. Dekkers and L. de Haan (1989). On the estimation of the extreme-value index and large quantile estimation. Annals of Statistics 17, 1795-1832.
    47. A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan (1989). A moment estimator for the index of an extreme-value distribution. Annals of Statistics 17, 1833-1855.
    48. L. de Haan, S.I. Resnick, H. Rootz\'en, C. de Vries (1989). Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH-processes. Stochastic Processes and Applications 32, 213-224.
    49. L. de Haan and R.L. Karandikar (1989). Embedding a stochastic difference equation in a continuous-time process. Stochastic Processes and Applications 32, 225-235.
    50. L. de Haan (1989). A Brownian bridge connected with extreme values. Sankhy\`a, series A 52, 157-165.
    51. A.A. Balkema and L.de Haan (1990). A convergence rate in extreme-value theory. J. Applied Probability 27, 577-585.
    52. L. de Haan (1990). Fighting the arch-enemy with mathematics. Statistica Neerlandica 44, 45-68.
    53. V. Dijk and L. de Haan (1992). On the estimation of the exceedance probability of a high level. Order statistics and nonparametrics: Theory and applications. P.K. Sen and I.A. Salama (Editors), 79-92. Elsevier, Amsterdam.
    54. L. de Haan and H. Rootz\'en (1993). On the estimation of high quantiles. J. Statist. Planning and Inference 35, 1-13.
    55. A.A. Balkema, L. de Haan and R.L. Karandikar (1993). The maximum of $n$ independent stochastic processes. J. Applied Probability 30, 66-81.
    56. L. de Haan and S.I. Resnick (1993). Estimating the limit distribution of multivariate extremes. Communications in Statistics - Stochastic Models 9, 275-309.
    57. J. Einmahl, L. de Haan and Huang Xin (1993). Estimating a multidimensional extreme-value distribution. J. Multiv. Analysis 47, 35-47.
    58. A.L.M. Dekkers and L. de Haan (1993). Optimal choice of sample fraction in extreme-value estimation. J. Multiv. Analysis 47, 173-195.
    59. L. de Haan and S.I. Resnick (1994).Random transformations for Poisson processes and sup-integral processes. Communications in Statistics - Stochastic Models 10, 205-221.
    60. L. de Haan, D.W. Jansen, K. Koedijk and C.G. de Vries (1994). Safety first portfolio selection, extreme value theory and long run asset risks. Extreme value theory and applications (J. Galambos et al., eds.) 471-487. Kluwer, Dordrecht.
    61. L. de Haan and S. Resnick (1994). Estimating the home range. J. Appl. Prob. 31, 700-720.
    62. L. de Haan (1994). Estimating exceedance probabilities in higher-dimensional space. Communications in Statistics - Stochastic Models 10, 765-780.
    63. K. Aarssen and L. de Haan (1994). On the maximal life span of humans. Mathematical Population Studies 4 (4), 259-281.
    64. L. de Haan (1994). A unified criterion for the domain of attraction of extreme value distributions. Th. Prob. Appl. 39, 323-328.
    65. L. de Haan and X. Huang (1995). Large quantile estimation in a multivariate setting. J. Multiv. Anal. 53, 247-263.
    66. A.A. Balkema, J.L. Geluk and L. de Haan (1995). Measuring asymptotic convexity. Publ. de l'Inst.Math. (Beograd) 58(72), 106-116.
    67. L. de Haan (1996). Von Mises conditions in second order regular variation. J. Math. Analysis Appl. 197, 400-410.
    68. G. Draisma and L. de Haan (1996). An estimator for the extreme-value index. Communications in Statistics - Theory and Methods 25, 685-694.
    69. L. de Haan and S. Resnick (1996). Second order regular variation and rates of convergence in extreme value theory. Annals of Probability 24, 97-124.
    70. S. Cheng, L. de Haan and J. Yang (1996). Asymptotic distributions of multivariate intermediate order statistics. Th. Prob. Appl. 41, 840-853.
    71. L. de Haan and U. Stadtm\"uller (1996). Generalized regular variation of second order. J. Australian Math. Soc. (Series A) 61, 381-395.
    72. S. Cheng, L. de Haan and X. Huang (1997). Rate of convergence of intermediate order statistics. J. Theoretical Probability 10, 1-23.
    73. L. de Haan and L. Peng (1997). Rate of convergence for bivariate extremes. J. Multivariate Analysis 61, 195-230.
    74. J. Einmahl, L. de Haan and A. Sinha (1997). Estimation of the spectral measure of an extreme-value distribution. Stoch. Proc. Appl. 70, 143-171.
    75. J. Geluk, L. de Haan, S. Resnick and C. Starica (1997). Second order regular variation, convolution and the central limit theorem. Stoch. Proc. Appl. 69, 139-159.
    76. L. de Haan and L. Peng (1997). Slow convergence to normality: an Edgeworth expansion without third moment. Prob. and Math. Stat., 17, 395-406.
    77. L. de Haan and L. Peng (1998). Comparison of tail index estimators. Statistica Neerlandica, 52, 60-70.
    78. L. de Haan and J. de Ronde (1998). Sea and wind: multivariate extremes at work. Extremes, 1, 7-45.
    79. L. de Haan and S. Resnick (1998). On asymptotic normality of the Hill estimator. Stoch. Models, 14, 849-867.
    80. Holger Rootz\'en, M.R. Leadbetter and Laurens de Haan (1998). On the distribution tail array sums for strongly mixing stationary sequences. Annals Appl. Probab, 8, 868-885.
    81. L. de Haan and T. Themido Pereira (1999). Estimating the index of a stable distribution. Statistics and Probability letters, 41, 39-55.
    82. H. Drees and L. de Haan (1999). A note on conditions for quantile process approximations. Stoch. Models, 15, 485-502.
    83. L. de Haan, L. Peng and H. Iglesias Pereira (1999). Approximation by penultimate stable laws. Probability and Mathematical Statistics, 19, 105-121.
    84. L. de Haan and A.K. Sinha (1999). Estimating the probability of a rare event. Annals of Statistics, 27, 732-759.
    85. L. de Haan and L. Peng (1999). Exact rates of convergence to a stable law. J. London Math. Soc. , 59, 1134-1152.
    86. M.I. Gomes and L. de Haan, (1999). Approximation by penultimate extreme-value distributions. Extremes, 2(1), 71-85.
    87. G. Draisma, L. de Haan, L. Peng and T. Themido Pereira (1999). A bootstrap based method to achieve optimality in estimating the extreme-value index.Extremes, 2, 367-404.
    88. H. Drees, L. de Haan and S. Resnick (2000). How to make a Hill plot, Annals of Statistics, 28, 254-274 .
    89. J. Geluk and L. de Haan (2000). Stable probability distribution and their domains of attraction: a direct approach, Prob. and Math. Stat. 20, 169-188.
    90. L. Canto e Castro, L. de Haan and M.G. Temido (2000). Rarely observed maxima. Th. Prob. Appl. 45, 779-782.
    91. P. Embrechts, L. de Haan and X. Huang (2000). Modelling multivariate extremes. In: Extremes and integrated risk management, P.L. Embrechts ed., 59-70, Risk books, Risk Waters Group.
    92. J. Danielsson, L. de Haan, L. Peng and C.G. de Vries (2001). Using a bootstrap method to choose the sample fraction in tail index estimation. J. of Multivar. Anal., 76,226-248.
    93. L. de Haan and T. Lin (2001). On convergeance towards an extreme value distribution in C[0,1]. Annals of Prob. 29, 467-483.
    94. S. Cheng and L. de Haan (2001). Penultimate approximation for Hill's estimator. Scand. J. Stat.28, 569-575.
    95. J. Einmahl, L. de Haan and V. Piterbarg (2001). Non-parametric estimation of the spectral measure of an extreme value distribution. Annals of Statistics, 29,1401-1423.
    96. D. Dietrich, L. de Haan and J. Huesler (2002). Testing extreme value conditions. Extremes 5, 71-85.
    97. J. Geluk and L. de Haan (2002). On bootstrap sample size in extreme value theory. Publ. de l'Inst. Math., Nouvelle serie, 71(85), 21-25.
    98. L. de Haan, D. Li, L. Peng and H. Pereira Iglesias (2002). Alternative conditions for attraction to stable vectors. Probability and Mathematical Statistics, 22, 303-317.
    99. M.Ivette Gomes, Laurens de Haan and Liang Peng (2002). Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes, 5, 387-414.
    100. M.I. Fraga Alves, M.I. Gomes and L. de Haan (2003). A new class of semiparametric estimators of the second order parameter. Portugalia Mathematica 60, 193-213.
    101. Holger Drees, Laurens de Haan and Deyuan Li (2003). On large deviations for extremes. Stat.Prob.Letters, 64, 51-62.
    102. A. Ferreira, L. de Haan and L. Peng (2003). On optimizing the estimation of high quantiles of a probability distribution. Statistics, 37, 401-434.
    103. M.I. Fraga Alves, L. de Haan and T.Lin (2003). Estimation of the parameter controlling the speed of convergence in extreme value theory. Math.Methods of Stat. 12, 155-176.
    104. Laurens de Haan and Tao Lin (2003). Weak consistency of extreme value estimators in C[0'1]. Annals of Statistics 31, 1996-2012.
    105. G. Draisma, H. Drees, A. Ferreira and L. de Haan (2004). Bivariate tail estimation: dependence in asymptotic independence. Bernoulli 10, 251-280.
    106. H. Drees, A. Ferreira and L. de Haan (2004). On maximum likelihood estimation of the extreme value index. Ann.of Appl.Prob 14, 1179-1201.
    107. I.Gomes, L. de Haan and D. Pestana (2004). Joint exceedances of the ARCH process. J. Appl. Prob. 41, 919-926.
    108. L. de Haan and T.T. Pereira (2006). Spatial Extremes: Models for the stationary case. Ann. Statist. 34, 146-168.
    109. L. de Haan and A. Ferreira (2006). Extreme Value Theory: An Introduction. 417 pages. Springer.
    110. H. Drees, L. de Haan and D.Li (2006). Approximations to the tail empirical distribution function with application to testing extreme value conditions. J. Stat. Planning and Inference 136, 3498-3538.
    111. L. Canto e Castro and L. de Haan (2006). A class of distribution functions with less bias in extreme value estimation. Stat.Prob.Letters, 76, 1617-1624.
    112. J. H. J. Einmahl, L. de Haan and D. Li (2006). Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition. Ann. Statist. 34, 1987-2014.
    113. M. I. Fraga Alves, L. de Haan and T. Lin (2006). Third order extended regular variation. Publ. de l'Institut Mathématique (PIMB), Nouvelle Série 80, 94, 109-120.
    114. M.I. Barao, L. de Haan and D. Li (2007). Comparison of estimators in multivariate EVT. International J. Statistics and Systems, 2, 75-91.
    115. M. I. Gomes, L. de Haan and L. Henriques (2008). Tail index estimation through the accommodation of bias in the weighted log-excesses. JRSS-B, 70, 31-52.
    116. L. de Haan and C. Zhou (2008). On extreme value analysis of a spatial process. Revstat, 6, 71-81.
    117. L. de Haan, C. Neves and L. Peng (2008). Parametric tail copula estimation and model testing. J. Multivariate Anal. 99, 1260-1275.
    118. A. Buishand, L. de Haan and C. Zhou (2008). On spatial extremes; with application to a rainfall problem. Annals of Applied Statistics, 2, 624-642.
    119. M. I. Fraga Alves, L. de Haan and C. Neves (2009). A test procedure for detecting super-heavy tails. J. Stat. Planning and Inference, 139, 213-227.
    120. M. I. Fraga Alves, M. I. Gomes, L. de Haan and C. Neves (2009). Mixed moment estimator and location invariant alternatives. Extremes, 12, 149-186.
    121. L. de Haan, C. G. de Vries and C. Zhou (2009). The expected payoff to Internet auctions. Extremes, 12, 219-238.
    122. Z. Kabluchko, M. Schlather and L. de Haan (2009). Stationary max-stable fields associated to negative definite functions. Annals of Probability, 37, 2042-2065.
    123. L. de Haan and C. Zhou (2011). Extreme residual dependence for random vectors and processes. Adv. in Appl. Probab., 43, 217-242.
    124. J. Cai, J. Einmahl and L. de Haan (2011). Estimation of extreme risk regions under multivariate regular variation. Annals of Statistics, 39, 1803-1826.
    125. A. Ferreira, L. de Haan and C. Zhou (2012). Exceedance probability of a stochastic process. J. Multiv. Analysis, 105, 241-257.
    126. L. de Haan, C. G. de Vries and C. Zhou (2013). The number of active bidders in Internet auctions, Journal of Economic Theory, 148, 1726-1736.
    127. J.H.J. Einmahl, L. de Haan and A. Krajina (2013). Estimating extreme multivariate quantile regions. Extremes, 16, 121-146.
    128. J. Cai, L. de Haan and C. Zhou (2013). Bias correction in extreme value statistics with index around zero. Extremes, 16, 173-201.
    129.L. de Haan, A. Klein Tank and C. Neves (2011). On tail trend detection: modeling relative risk. Submitted.
    130.H. Drees and L. de Haan (2011). Estimating failure probabilities. Submitted.
    131.A. Ferreira and L. de Haan (2012). The Generalized Pareto Process; with application. Submitted.
    132.J. Cai, J.H.J. Einmahl, L. de Haan and C. Zhou (2012). Estimation of the marginal expected shortfall: the mean when a related variable is extreme. Submitted.
    133. L. de Haan, C. Mercadier and C. Zhou (2013). Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Submitted.
    134.A. Ferreira and L. de Haan (2013). On the block maxima method in extreme value theory. Submitted

Communications

Comunicações orais por convite

I gave 8 invited lectures at several places in Japan in 2012